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Some non-local transformations between nonlinear 
diffusion equations 

J R King 
Department of Theoretical Mechanics, University of Nottingham, Nottingham NG7 ZRD, 
U K  

Received 10 August 1990 

Abstract. Generalized Backlund transformations are applied to derive links between a 
large number of different types of nonlinear diffusion equations, including many which 
are of physical significance. Some new exactly linearizable forms are determined. 

1. Introduction 

This paper is concerned with some extensions and further applications of a generalized 
Backlund transformation which was first introduced by Storm [ I ]  (see also Crank [2] 
pp 176-7) and which transforms the nonlinear diffusion equation 

into the linear heat equation. 
This transformation has already been applied to the more general equation 

which may also be written 

where 

is the Kirchhoff variable, uo being an arbitrary constant. 
Writing U = at./&, (1.2) becomes 

a t  

or 

"="[.(3] at  ax (1.4) 
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(the arbitrary function of time which arises in integrating (1.2) may without loss of 
generality be set to zero by translating c by the appropriate function of time). Writing 

a w  

ax 
t‘=- 

(1.4) becomes (again without loss of generality) 

aw 
a t  

(1 .5)  

The sequence (1.2), (1.41, ( 1 . 5 )  was noted by Moulana and Nariboli [3] (see also 
Akhatov et a1 [4, 51). 

The relevant transformation is simplest for (1.4). We introduce the hodograph type 
transformation 

u = x  x =  v t = T  (1.6) 
so that 

at‘ av av 
a t  aT ax 

- 1  

and 

ax’ ’ 
We then obtain 

av av a’v 
a T -  ( ax )aX2  
- - D *  - - 

which is a n  equation of the same form as (1.4), with 

D*( U )  = U-’D(  U - ’ ) .  

(1 .7 )  

In particular when D ( u )  = u - ~ ,  corresponding to ( l . l ) ,  then (1 .7 )  is the linear heat 
equation. This relationship was noted by Vein (see Ames [6]). 

The corresponding transformation for ( 1 . 5 )  is (cf Akhatov et a1 [5]) the Legendre 
transformation 

so that 

with 

This gives 

aw 
aT (1.10) 
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where 

K*(  U )  = - K (  U - ' ) .  ( 1 . 1 1 )  

Corresponding to ( 1  . l )  this transformation maps the equation 

(1.12) 

into the linear heat equation. 

(1.2) is mapped into 
Written in terms of U, the transformation is more complicated and non-local, but 

aU a 
aT ax (1.13) 

where 

The corresponding transformation was used by Knight and Philip [7], Rosen [8] and 
Bluman and Kumei [9] to linearize ( 1 . 1 ) .  The more general case of mapping (1.2) into 
(1.13) for D ( u )  = U', D*( U )  = U-2-" was discussed by Berryman [ lo]  and Munier et 
a1 [ 113 ,  and the case of general D( U )  appears in Rogers and Shadwick [ 121 and Burgan 
et a1 [13]. 

More recently this transformation has been extended by Fokas and Yortsos [14] 
and Rosen [ 151 to linearize equations of the form 

where a is a constant. This becomes 
- 1  au 

so that 

av a2v 
d T - ax2 + a (%)* (1.14) 

and U satisfies Burgers' equation 

au a2u au 
dT ax2 ax - +2aU-- 

Equation (1.14) is transformed by the substitution V =  ( l / a )  In Q into the linear 
heat equation 

J Q  a'Q 
a T - a x 2 '  

The purpose of this paper is to obtain further generalizations of the transformation, 
applying it to various problems of nonlinear diffusion type. We shall show how different 
classes of nonlinear equation are linked together by the transformation, and we shall 
derive new exactly linearizable equations. The transformations can be used to carry 



5444 J R K i n g  

over results (such as exact solutions or theorems) from a given class of equations of 
other classes. A recent review of qualitative results for some nonlinear diffusion 
equations is given by Kalashnikov [ 161; transforming both the equations and the 
conditions of the theorems under the mappings given here would give results for 
additional classes of equation. Some simple illustrations of transformations of exact 
solutions are given below. 

Relationships between various of the functions arising in the analysis will usually 
follow that of this section, so that the following relationships will hold everywhere 
except section 7,  and will not be continually repeated: 

aw a U  

ax ax ax ax V = -  d V  U = -  a w  U = -  U = -  

v = x  X = U  T = r  

The remainder of the paper is organized as follows. Section 2 is concerned with the 
inhomogeneous diffusion equation 

and  the equations into which it maps, and  section 3 generalizes these results to 

au a 
at ax ax 
- = - D( U ) 2) 

Section 4 discusses equations of the form 

"='[+,g)] a t  ax 

and some specific subclasses of this; assorted other examples are then considered in 
section 5 .  In section 6 transformations based on the first moment (which is related to 
the centre of mass) rather than on the mass are discussed. The transformations and  
results we obtain in sections 2-6 are necessarily rather disjointed, but many of the 
results are brought together and  unified in the discussion of section 7. Tables 1 and  
2, in particular, make clearer many of the relationships which we derive. 

2. The equation U ,  = ( f ( x ) u - * u , ) ,  

2.1. Transformations 

In  this section we consider the inhomogeneous nonlinear diffusion equation 

which is a generalization of (1.1). The results we derive are related to some 
given by Munier et al [ l l ] .  

(2.1) 

of those 
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Applying the transformations of section 1 gives 

a t  

so that 

Introducing 

where V, and k are arbitrary constants now gives a homogeneous nonlinear diffusion 
equation 

where g(A)  =f( V). In the homogeneous case f ( x )  = 1 we have given the standard 
reduction of (2.1) to the linear heat equation. 

Important special cases of (2 .1)  arise from the radially symmetric equation 

We write 

x = N - N r N  

to give 

and equation (2.3) becomes 

(2 .7)  

Choosing V, appropriately and taking k = ( 2  - N ) /  N for N # 2 and k = 1 for N = 2 ,  
definition (2.4) gives 

N f 2  
In V N = 2  

v‘Z-”I” 
A = {  

giving for N # 2 

and for N = 2 

(2 .9)  

(2.10) 
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Using well known transformations (see section 1 and [lo]), equation (2.9) may in turn 
be mapped into 

(2.1 1) 

so that equations of the form (2.6) with N = NI and N = Nz (for N , ,  Nz # 2) may be 
mapped into one another if 

2 N , - 2  2 

i.e. if N2 = NI/(  N, - 1).  

2.2. Particular exact solutions 

This section is intended to be illustrative of the way in which our  transformations can 
be applied to generate new exact solutions from known solutions. We note that the 
relationships derived in this paper between various classes of diffusion equation provide 
additional motivation for the construction of exact solutions to a given equation, since 
these may be mapped into solutions of other equations. 

Throughout this section, /3 will denote an  arbitrary constant. Equation (2.5) then 
has similarity solutions of the form given below (as noted by Waller [17], these forms 
may be slightly generalized by replacing X by X + X o  and T by T + To where X o  and 
To are arbitrary constants). 

(i) A = n ( X  - PT) .  These may be determined exactly in the form 

where A. and A ,  are arbitrary constants. These map into steady-state solutions of 
equation (2.1): 

U = w ( x ) .  

(ii) A = R(X/ These map into separable solutions of equations (2.1): 
I 1 2  u = t  w ( x ) .  

Equation (2.9) has additional similarity solutions of the following forms. 
).  These map to solutions of equation (2.6) of ( i )  A = ~ i N - Z ) P f i ( x /  T~l /2l--(h'- l )@ 

the form 

= [ ' I  ' 2 ) + P  w ( r t P ) .  

In  particular /3 = 4 gives the instantaneous source solution 

1 A = T"/2)( h - 2 )  R ( X T '  I ' 2 ) (  h - 2 )  

U = tw(rtl'2) 

and  the generalized dipole solution 

for both of which explicit solutions can be found (see King [18]). 
The choice P = 1/ N gives the dipole solution 

A = T' 'v -21"v fl(xT'%-2' ? \ )  (2.12) 
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Solutions of the form (2.12) are available in closed form, namely 

(2.13) 

(2.14) 

where 7 = XT‘N-2”2“ and cy is an  arbitrary constant; we note that this solution is 
sometimes better written as a similarity solution of the form 

1 A = ( -T ) ( ” -2 ’ /NR ( x ( -  ~ ) l  N-ZJIZN 

(see [18]). Expression (2.14) gives 

A ( x t )  = t-(”-2i/ZN 

where 

with 6 = xt, and U is then given by 

This gives a new exact solution to equation (2.6); we note that it is derived from a 
solution to (2.5) and  not directly from (2.6). 

u = t  w ( r t  

R( X + P In T ) .  These map to 

). 

(ii) A = T ( ” - 2 ) / 2 ~ N - 1 )  

N / 2 (  h - 1 1 1 / 2 (  h - I i 

For p = 0 we have the separable solution to equation (2.9) and the instantaneous source 
solution to (2.6) both of which can be determined exactly. 

(iii) A = exp[ -P (N-2)T]R(X/exp[ (N  - 1)PTI) .  These map to solutions of the 
form 

U = e-@‘w( r / ep f ) ,  

Corresponding to N = 2 we have equation (2.10) with the following similarity 

(i) A = -2p In T+R(X/T‘ ’ ’2 ’ -P ) .  These map to 
solutions. 

= t ( l /Z) fP  w ( r t P ) .  

( i i )  A = -In T + R ( X  + p  In T ) .  These map to solutions 

First 
case, 

and  

U = tw(rt”2) .  

integrals of the similarity ordinary differential equations are available in each 
namely 
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where q,, is an arbitrary constant, p is the same in each case, and q = X + p In T, 
5 = rt"*. The general solutions to each for p = 0 are already known [ 181. 

(iii) A = 2pT+fl(X/eP') .  These map to 

U = e-P'u(r/eP') .  

3. The equation U, = ( f ( x ) D (  u)u,), 

We now generalize the results of the previous section by considering general one- 
dimensional inhomogeneous nonlinear diffusion equations of the form 

au a 
a t  ax ax 
- = - (f (x) D ( U ) 2) (3.1) 

Radially symmetric homogeneous diffusion equations can easily be written in this 
form, as noted in the previous section. 

Applying the transformations of section 1, (3.1) maps to 

so that 

av 
aT 

where 

D*( U )  = U-*D( 

Writing 

with V, an arbitrary constant gives 

dT A=L[ ax K * ( g ( A ) s ) ]  

where 

K * (  U )  = D*( 0) d o  I:: 
U,, being an  arbitrary constant, and 

g ( A )  =f( VI. 
We note that since 

writing U,, = I /  U, gives 

(3.3) 

(3.4) 

(3.5) 

K * (  U )  = - K (  U - ' )  

as in section 1,  
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Equation (3.5) is a special case of the class of equations discussed in section 4. 
Writing A = a B / a X ,  equation (3.5) maps to 

Restricting attention now to the special case 

1 
n 

K * ( U ) = - U "  

equation (3.5) is 

-=- aA 1 - [ h ( A j ( g ) ' ]  a 
aT n d X  (3.7) 

where 

h ( A )  = g " ( A ) .  

Equations of the form (3.7) have quite a large number of applications (see, for example, 
Atkinson and Jones [ 191 and Esteban and Vazquez [20]). Reversing the transformations 
we have 

D*( U )  = U"-' D ( u )  = U - n - '  

with 

V =  I,' h ' / " ( a )  d a  

for some constant A o ,  and equation (3.1) has the form 

au a 
at ax ax 

We have therefore derived a mapping from equation (3.7) to the more familiar 
equation (3.8). Furthermore, for n = -1 we have given a reduction from equation (3.7) 
to a linear diffusion equation for any h ( A ) .  Applications of these (and other) results 
for equation (3.7) will be presented elsewhere. 

Corresponding to equation (3.71, equation (3.6) takes the form 

a B -  1 ( a B ) (  a'B)" 
dT n ax ax h -  7 

so that the form for n = -1, namely 

is linearizable for any h ( A ) .  
A particularly common form is 

h ( A )  = A m  

and then 

g ( A )  = A" 
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with a = m / n  and we may take 

f f z - 1  

Cu=-l 

so that equation (3.8) becomes 

4. Equations of the form U,  = [ E ( u ,  U,)], 

4.1. Introduction 

This section is concerned with equations which may be written in the form 

" = ' [ E ( u , g ) ] .  a t  ax (4.1) 

A number of subclasses of the form (4.1) have found physical application (see below). 
Equation (4.1) becomes 

and this maps to 

an equation of the same form, with 

Equation (4.3) then gives 

au - = d [ E " (  U , $ ) ]  
aT  dX 

(4.2) 

(4.3) 

(4.5) 

which is of the same form as (4.1). 
In particular, equation (4.1) is mapped into itself if  E may be written in the form 

where F is any function. 

4.2. E(u, U,) = D(u)u ,  + f ( u )  

We now consider the nonlinear convection-diffusion equation 

a t  ax (4.6) 
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Equation (4.5) now has the form 

au a 
aT ax (4.7) 

(i.e. it is another equation of the same class) with 

D*( U )  = r 2 D (  U - I )  

D( U )  = au  - 2  

f*( U )  = - Uf( U - I )  

this result was given by Rogers er a1 [21]. Equation (4.7) is Burgers’ equation when 

f( U )  = pu-I 

so this case is exactly linearizable (see [14]). 

4.3. E(u, U,) = D ( u ) ~ u , ~ ~ - ~ u ,  

As we have already mentioned, equations of the form 

au a 
a t  ax (4.8) 

have arisen in a number of contexts. When D( U )  = 1 the equation is a special case of 
( 1.4) corresponding to 

This case was discussed by Philip [22]. 
Equation (4.8) leads to 

which maps to 

av 
dT 

where 

6( U )  = u’-3”D( U - ’ )  

and 

which is of the same form as equation (4.8). 
We note in particular the case 

D( U )  = u ~ - ~ ~  

since then 

B ( U ) = l  

(4.9) 

(4.10) 

(4.11) 

(4.12) 

and equation (4.12) is a special case of equation (1.4). Applications of these results 
will also be discussed elsewhere. 
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4.4. Combinations of local and non-local transformations 

In King [23] it was shown how simple local transformations (in particular, translations 
of U )  may be combined with non-local transformations to map a given diffusion 
equation into a more general one. In this section we shall generalize the results of 
[23], but we start by restating them in a slightly different way. The sequence of 
transformations outlined in [23] is as follows ( a ,  p, p, v and A are arbitrary constants 
with av # pp, A f 0). 

We start with 

We replace U by ( l / a ) [ ( a v - p p ) u + p ]  to give 

We transform as in section 1 to give 

We replace U by a U + p and T by AT to give 

(4.13) 

(4.14) 

Thus (4.13) is mapped into the more general equation (4.14); further applications 
of similar transformations do not lead to further increases in generality. We now 
generalize this result to the equation 

(4.15) 

We replace U by (1/ a ) [  (av - &)U + p], x by - (ay  - p p ) x /  y and t by A (av - pp) ' t /  y 
( a ,  p, p, v, A and y are arbitrary constants with av # pp, A # 0, y # 0) to give 

We apply the non-local transformations of section 4.1 to give 

(iii) 
(YU 

We replace U by a U + p  to give 

(4.16) 

Hence equation (4.15) is mapped into (4.16). The detailed application of these 
transformations in deriving new solutions to equations of the form (4.8) will be 
presented elsewhere. 
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5. Miscellaneous examples 

5.1. The equation U, = F(u, U,, U . ~ J  

Here we consider the more general equation 

a t  

Differentiating equation (5.1) yields 

'=?[ a t  ax F (  u dx, U,:)] 

for some xo = xo( t) .  Equation (5.1) is mapped to 

a V  av 
aT ax 

which may be differentiated to give 

(5.3) 

In contrast to the form (5.2), equation (5.4) is a purely local equation containing no 
integrals of U. 

The reverse process starts with 

*=A[ a t  ax qs, .,$)I 
which goes to 

and then to 

d V  a V  
dT ax (5.7) 

We note that equations (5.1) and (5.7) do  not contain the space variable (x or X )  
explicitly; equations (5.3) and (5.6) do not contain the dependent variable ( v  or V )  
explicitly. 

As an illustration we consider the equation 

' = A [  D(u)*+@( U dx)  U ]  
a t  ax ax - X  

which is a slight generalization of the equation discussed by Nagai and Mimura [24]. 
This maps to 

and then to 

(5.9) 

(5.10) 
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where D*( U )  = U-'D( U - ' ) .  In particular, when D ( u )  = u - ~  then equation (5.10) is 
linear for any @(U). Equation (5.10) leads to 

au a d@ -=-( aT ax D * ( U ) g )  - - ( X )  dX (5.11) 

which is a standard nonlinear diffusion equation with a position-dependent sink term. 
Reversing the transformations, such an  equation can always be mapped into one of 
the form (5.9). 

Equation (5.9) also maps to 

e at = K (2) + cp (E) 
where 

c p ( ~ ) =  @(6)dG I: 
for some constants uo and u0,  and equation (5.12) transforms to 

where K * (  U )  = - K (  U - ' )  

5.2. The equation U, = f(u)u,,  +g (v )u ,+  h(u) 

By writing 

U = I: D ( c )  d c  

for some constant co, the nonlinear reaction-convection-diffusion equation 

a c  a 
at ax ax 

may be written in the form 

au a' U au 
at ax ax 
-= f ( v ) , + g ( v ) - +  h ( v )  

which is a special case of equation (5.1) and maps to 

so that 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

Hence for any f ( u ) ,  g ( v )  and h ( u ) ,  equation (5.14) can be mapped into an equation 
with linear (but position-dependent) convection and reaction terms and with a very 
particular type of nonlinearity in the diffusion term. 



Non-local transformations between nonlinear difSusion equations 5455 

5.3. The equation U, = [ E ( u ,  U,)], + a x u ,  + p u  

We may slightly generalize the results of section 4.1 by considering equations of the form 

a t  ax ax 

where a and p are arbitrary constants. This gives 

and  

av a2v a V  
aT ax’ ax2 aX 

where 
cY*=a-p p*  = - p  

and 

Hence we obtain 

$ = & [ E * (  u ,g)]+a*xdx+p*u au 

which is an equation of the  same form as (5.17). 

6. First-moment-based transformations 

In this section we return to the equation 

(5.17) 

(5.18) 

Equation (6.1) is a conservation law and expresses conservation of mass. Since 

u =  J x  u ( x , t ) d x  
.Xu( I I 

for some x , , ( t ) ,  the variable U gives the total mass between xo and x and is the basis 
for the transformation described in section 1. It is important for most of our results 
that the equation we wish to deal with be written in the conservation form 

dm aJ  -+-=o 
a t  ax 

by appropriate choices of the variables m and J. For more general descriptions of the 
application of non-local transformations to conservation laws see, for example, 
Kingston and  Rogers [25], Kingston et a1 [26] and  Rosen [27]. 

The transformation proceeds by writing 
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and integrating with respect to x ,  after which a hodograph-type transformation is made. 
A more general discussion of such transformations has been given by Clarkson e t  a1 [28]. 

In transforming equation (6.1) we have taken 

Equation (6.1), however, may also be written in a conservation form which expresses 
conservation of the first moment by writing 

We then define 

an 
U = x - '  - 

a x  
m = x u  

with 

a 
a x  

J = - x - - [ K ( u ) ] + K ( u ) .  

Hence n =I:,(,) x u  dx for some x , ( t ) ,  giving the first moment of U between x ,  and x .  
We then obtain 

Equation (6.4) may be further integrated by writing 

a w  
a x  

n = x - - w  

to recover (without loss of generality) 

(6.4) 

(6.5) 

aw 
-= a t  K (2). 

The relationship 

a' w 
ax' 

U =- 

holds, as in section 1, and  equation (6.5) shows that 

n = W. 

We note also that by introducing x = y - '  we may write equation (6.4) in the conservation 
form 

-= a n  - - [ y K  a 
at  ay ( -y3  E)]. 

We now apply the hodograph-type transformation to equation (6.41, writing 

v = x  Z = n  T = t  
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together with 

c = y =  v-' 
Then 

aT - V- az a { K [ V - '  ( $ ) - ' ] } + $ K  [ V-'($)-'] 

and 

5 = &{ C K  [ - C 3  ($) -'I}. 
(6.7) 

Considering now the special case 

D( U )  = uoL 

so that 

a #  -1 

a = - 1  

equation (6.8) is 
- ( a + l )  

i f a # 1  

if a = -1. 
(6.9) aT 

Equation (6.9) belongs to the class discussed in section 4.3. In the special case when 

D ( u )  = 

so that a = -2, we have given a mapping of (6.1) into itself. 
Equation (6.8) may be integrated by noting that 

a v  
az 

C=-  

so that 

aT az 
and since 

z =  w v = x  
we may then recover 

aw a2 w 

Finally, we note that conserved quantities for wider classes of nonlinear diffusion 
equation have been given by King [29], and these can also be used as the basis for 
non-local transformations in a manner similar to that described in this section. 
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t -  

3 
C r  

l u  

h 

m 

- *  

;] 
J J. 

i sd: 

I Y Y I 
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7. Discussion 

We start by summarizing in the form of table 1 many of the relationships we have 
determined; table 1 also includes links to many additional equations. The transforma- 
tions which have been included are those which can be obtained without significantly 
increasing the complexity of the equations involved. a # - 1  is assumed throughout. 
Horizontal lines represent relationships based on integration (to the right) or differenti- 
ation (to the left), Solid vertical lines represent hodograph type transformations, dashed 
lines Legendre transformations, and the dashed-dotted line is a purely local transforma- 
tion. In order to gain brevity the notation is rather different from most of the paper; 
suffices represent differentiation and in particular the t suffix in each case means 
differentiation with respect to t keeping the independent variable appearing in the 
suffix on the right-hand side of the equation fixed. 

The following points about table 1 may be made. 
(a) Further relationships not listed in the table exist between the various functions; 

in particular 

(giving a local transformation between (20 )  and (9)) 

(giving a local transformation between ( 1 )  and ( 1 2 ) )  

3 5 = 1 / Y  

5 = l / v  

ZL = uy 

y, = bx qc = v / b  U, = au P, = y l a  
U* = P 5  c p z  = Z I P  Y ,  = (+I (CIH = w/u. 

p = -uy 
3 

U = - X U  

w, = X U  

Equations in which the right-hand side can be written exactly as a second derivative 
have first-moment-based transformations resulting from these relationships as follows: 

between ( 6 )  and (16 )  by U = l / x  

between ( 1 5 )  and ( 7 )  by y, = xb x = l / u  

between (9) and (21 )  by z, = y u  Y = 115 
between ( 1 2 )  and ( 2 )  by U = 115 

between ( 2 0 )  and (10 )  by = 5P 5 =  1 l Y  
between ( 1 )  and ( 1 3 )  by Y ,  = 5 =  1 / U .  

U ,  = ua 

w, = UX 

The third and fourth of these correspond to the transformation described in section 
6. Further direct links between other pairs of equations in table 1 can also be found, 

(b) The transformation from ( 9 )  to ( 7 )  and (8) (or equivalently from (12 )  to ( 1 6 )  
and ( 1 7 ) )  was noted and exploited by Bouillet [ 3 0 ] .  

(c) Making the purely local transformation 

a = ( a  + 1)u"ii = ; l / ( a + l l  

equation ( 6 )  becomes 

which provides the link with the transformations of subsection 2.1. 

sponds to the special case referred to at the end of subsection 4.3. 
(d)  The relationship between ( 4 )  and (10 )  (or equivalently ( 1 8 )  and ( 1 3 ) )  corre- 



5460 J R King  

(e) When a = -$, ( 5 )  and (1 1) are identical so that the hodograph transformation 

Table 2 generalizes the results of table 1 by including an arbitrary function g ( y ) ;  
maps ( 5 )  into itself. The same holds true for (14) and (19) with a = -:. 
h ( 5 )  is defined by 

h(5) = 53"+4g(1/5). 
Table 2 follows the notation of table 1 and LY # -1 is again assumed. We note that 
fewer transformations can be included without significantly increasing the complexity 
of the equations involved. The following points may be made about table 2 .  

(a) The relationships 

vt = 5P 5 =  1 l Y  

Y = 115 
and 

z, = y u  
among others, hold as before and give first-moment-based 
(8) and ( 2 )  and between (1) and (9). 

(b) Introducing 

($1 dŷ  6 = g l / ' * + l ) ( y ) u  - l / ( a + l i  

(1) becomes 

transformations between 

where 
f(i) g- ' / ' "+ " ( y )  

which provides the link to the results of section 3. 

Table 2. A generalization of table 1 to include an arbitrary function g ( y ) .  

(4 )  1 
I 

I g ( 2, ) 2 ;:a + ' I  
1 1  

a + l  J = z b  I y ,  = -- [g("y;'""'], 
1 

a + l  
- z = -- 

I 

i p = - , J u  
, t = 1 / u  
I ( 7 )  i 
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(c) The relationships between (4), (3, (6) and (7) correspond to the results of 

(d) The table may be slightly extended without increasing the complexity when 
subsection 4.3. 

a = -3; by a hodograph transformation ( 3 )  then goes to 

Yr = -3g(Y)(-Yww)'13 

while ( I O )  goes to 

Similar extensions apply to table 1 .  
(e) A number of exactly linearizable equations are obtained by setting cy = 0. 
(f) The two sets of equations (1 ) - (5 )  and (6)-(10) are essentially identical if g 

satisfies 

g(5)  = 53"+4g(1/5) 

h ( 5 )  =At).  
so that 

This condition is met if 

G(5) G( 1/5) g ( 5 )  = p 3 / 2 ) = + 2  

for any function G. 

have determined. We noted in section 3 that equations of the form 
We may slightly generalize the classes of exactly linearizable equations which we 

" = - d [ h ( u ) ( g ) - ' ]  a t  ax 

are exactly linearizable and  subsection 5.1 showed that the same holds for 

These results may be combined and  generalized by considering equations of the form 

av a 
a t  ax ax 
- = - [ - h ( v )  (e) - ' + (o( .)I 

which maps to 

-=-( av a h ( X ) - - c p ( x ) )  av 
aT ax dX 

and hence to 

(7 .1 )  

so that (7 .1 )  is linearizable for any functions h and cp. Equation (7 .1 )  also integrates to 

aw 
a t  (7 .3 )  
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which transforms to 

so that equations of the form (7 .3)  are a.,o exactly lineariza 

form 

e. 
These results may be further generalized slightly to, for example, equations of the 

du=d[ a t  ax - h ( D ) ( ~ ) - 1 + 4  +$(U). 

This maps to 

which is linear for any functions h, cp and $. 

@ ( X )  = x 
We also note that if we choose 

D*( U )  = U-’ 

then (5.9) is Burgers’ equation, so that 

au a 
aT aX 

is exactly linearizable. By choosing 

in (5.17), equation (5.18) is linear, so that 

-=”( au .-$) +ax-+$pu au 
a t  ax ax 

(7 .4 )  

(7 .5)  

is also exactly linearizable. The linearizability of (7 .4 )  and (7.5) was noted by Svinolupov 

Some extensions of our results to higher-order equations (cf [28]) and to higher 
dimensions are possible. Considering, for example, the two-dimensional version of 
(1.3): 

[311. 

then writing 

gives without loss of generality 

a w  a 2 w  a 2 w  
a t  

and the two-dimensional form of the Legendre transformation is as follows: 

aw aw 
x=- Y ‘ a y  t = T  

aw aw 
ax aY ax w=x-+Y--w 
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and yields 

a2w a2w 
= = - K [  aw z+z 2] 

a2wa2w ' 

ax2 ay2 
- 

However, the physical relevance of equations of the form (7.6) 
Many of our results can be extended by combining the non- 

with local ones, as illustrated in subsection 4.4. For example, in 
without loss of generality be set to zero by replacing U by 

(7.6) 

is not clear. 
.local transformations 
equation (7.2) cp may 

so that cp may also be set to zero in equation (7.1) by a non-local transformation based 
on (7.7) in which x is replaced by 

As already noted, many of our results are particularly useful in dealing with 
equations of the form 

see, in particular, (4) and (18) of table 1 and (4) and (6) of table 2. More detailed 
results for (7.8) will be presented elsewhere. 
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